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ABSTRACT

High dimensionality poses many challenges to the use of data,
from visualization and interpretation, to prediction and stor-
age for historical preservation. Techniques abound to reduce
the dimensionality of fixed-length sequences, yet these meth-
ods rarely generalize to variable-length sequences. To ad-
dress this gap, we extend existing methods that rely on the
use of kernels to variable-length sequences via use of the Re-
current Neural Tangent Kernel (RNTK). Since a deep neural
network with ReLu activation is a Max-Affine Spline Oper-
ator (MASO), we dub our approach Max-Affine Spline Ker-
nel (MASK). We demonstrate how MASK can be used to ex-
tend principal components analysis (PCA) and t-distributed
stochastic neighbor embedding (t-SNE) and apply these new
algorithms to separate synthetic time series data sampled from
second-order differential equations.

Index Terms— Dimensionality reduction, Variable-
length, Neural tangent kernel, t-SNE, Recurrent neural net-
work

1. INTRODUCTION

Many signal processing and machine learning problems in-
volve high-dimensional data. In order to analyze and ex-
ploit such data effectively, we must find meaningful low-
dimensional representations. On the one hand, it is often ex-
tremely valuable to visualize data as a part of the exploration
process, yet we are limited as humans to visualizing in only
a few dimensions, typically two or three. On the other hand,
the data may be nonlinearly embedded in a high-dimensional
space, yet the meaningful attributes for a prediction task of
interest may lie in a low-dimensional space where linear
predictors achieve high accuracy.

Consequently, myriad methods for dimensionality reduc-
tion have been developed. These include linear parametric
transformations, such as Principal Components Analysis
(PCA) [1], sparse PCA [2], and Independent Components
Analysis (ICA) [3]; nonlinear parametric methods, such as
bottleneck features [4]; and non-parametric methods, such
as multi-dimensional scaling (MDS) [5], Isomap [6] and t-
distributed stochastic neighbor embedding (t-SNE), all of

which transform data points from the input space to a low-
dimensional space. Many of these methods find embeddings
for collections of data points in new spaces that preserve
similarities or distances. For example, in classical MDS,
data points are embedded into a space of lower dimensions
to preserve pairwise Euclidean distance. Such a distance,
while simple and efficient, yields a linear embedding that is
incapable of preserving nonlinear structures in data, corrobo-
rating research for more representative distance measures that
replace Euclidean distance. Isomap preserves the geodesic
distance of the points [6], and t-SNE preserves distances
based on fitted probability distributions [7]. Some works take
these a step further and use pairwise distances based on kernel
functions, a technique commonly used in machine learning.
Such kernel functions have successfully been applied to PCA
[8], Isomap [9, 10] and t-SNE [11].

Unfortunately, a challenge to all these methods is that the
pairwise distance function requires the two data points un-
der comparison to have the same number of dimensions, re-
stricting these methods to fixed-length data. This is partic-
ularly troubling for time-series data such as natural language
or physics continuity equations [12, 13, 14], wherein one may
need to deal with sequences of different lengths. One way to
solve this is to use a pairwise distance function that can take
inputs of different lengths.

Recent advances in deep learning theory have revealed
that the training dynamics of infinite-width neural networks
(NNs) learned via first-order gradient descent with Gaussian
parameter initialization are captured by a so-called neural
tangent kernel (NTK) [15]. In particular, [16, 17] showed
that a kernel can be derived from an infinitely wide recurrent
neural networks called the recurrent neural tangent kernel
(RNTK). The RNTK inherits the universal representation
power of infinitely wide RNNs [18] while also representing
a practical kernel that has been shown to outperform both
kernels induced from non-recurrent neural architectures and
classical kernels on a number of time series tasks [16]. RNTK
also gracefully handles data-points of varying lengths. The
above results and properties of RNTK make it a promising
yet under-explored candidate for time-series dimensionality
reduction applications.
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1.1. Contributions

We propose MASK (Max-Affine Spline Kernel), a kernel-
based time series dimensionality reduction method based on
RNTK with ReLU activation (and thus can be regarded as a
max-affine spline operator (MASO); see [19, 20] for detailed
explanations). We show that by simply replacing the com-
monly used kernels (such as Gaussian and polynomial) with
the RNTK in classic dimensionality reduction algorithms
such as PCA and and t-SNE, we can enable these algorithms
(which are traditionally not well suited for time series data) to
work well with time series data. We experimentally validate
our proposed MASK with PCA (RNTK PCA) and t-SNE
(RNTK t-SNE) on various synthetic time series data gener-
ated by linear dynamical systems and demonstrate MASK’s
superior performance in discovering clear patterns in each
dataset in the reduced dimensional space compared to PCA
and t-SNE with classic kernels.

2. RNTK AS A SIMILARITY MEASURE

In this section, we introduce RNTK and briefly show how to
compute it given a set of time series sequences of potentially
varying lengths. Note that this kernel matrix can be treated
as a similarity measure which then leads to its application to
dimensionality reduction that we explain in more detail in the
next section.

Consider a Deep Neural Network (DNN) mapping fθ(x)
with parameters θ and a pair of inputs x and x′, the Neural
Tangent Kernel (NTK) [15] is defined as:

Θ(x,x′) := 〈∇θfθ(x),∇θfθ(x′)〉. (1)

where θ is Gaussian distributed. In the regime of infinite
width of the layers employed by fθ, the above converges to
an analytical form [21, 22, 23, 24, 25] which can be used to
compute input similarities or gain insights into DNNs training
and representation power [26, 27, 28, 29]. When the consider
DNN as a recurrent architecture, namely a Recurrent Neural
Network, the limiting kernel is denoted as the RNTK [16, 17].
The key property that we will exploit in this paper is the fact
that RNTK provides a novel way to obtain similarity measure
of different length inputs thanks to the underlying recurrent
modeling of the inputs.

We overview the derivation of the RNTK from a single-
layer RNN with average pooling [30]. Given an input data
sequence x = {x(t)}Tt=1 of fixed length T with x(t) ∈ Rm,
an RNN with n units in each hidden layer performs the fol-
lowing recursive computation at each layer and each time step

g(t)(x) =
σw√
n
Wh(t−1)(x) +

σu√
n
Ux(t) + σbb (2)

h(t)(x) = φ
(
g(t)(x)

)
(3)

where W ∈ Rn×n, b ∈ Rn, U ∈ Rn×m, and φ(·) : R →
R is the activation function that acts entry-wise on a vector.

h(0)(x) is the initial hidden state, which is set to zero. The
output of an RNN at time t is computed via

f
(t)
θ (x) =

1√
n
Vh(t)(x) (4)

and the final output of the RNN is computed via

fθ(x) =

T∑
t=1

f
(t)
θ (x) =

T∑
t=1

1√
n
Vh(t)(x) ∈ Rd. (5)

The learnable parameters θ := vect
[
W,U,b,V}

]
are ini-

tialized to Gaussian N (0, 1) random variables. The set S =
{σw, σu, σb} represents the initialization hyperparametrs.

Leveraging the equivalence of infinite-width NNs with
Gaussian processes (GPs) [21, 22, 23, 24, 25], as n → ∞,
each coordinate of the RNN output at each time step con-
verges to a Gaussian process for two input sequence of pos-
sible different length x = {x(t)}Tt=1 and x′ = {x′(t)}T ′

t=1

with kernel

K(t,t′)(x,x′) = E
θ∼N

[
[f

(t)
θ (x)]i · [f

(t′)
θ (x′)]i

]
, ∀i ∈ [d]

(6)

known as the NN-GP kernel. The pre-activation g(t)(x) and
gradient vectors δ(t)(x) :=

√
n
(
∇g(t)(x)fθ(x)

)
also con-

verge to zero mean GPs with kernels

Σ(t,t′)(x,x′) = E
θ∼N

[
[g(t)(x)]i · [g(t

′)(x′)]i
]
∀i ∈ [n]

(7)

Π(t,t′)(x,x′) = E
θ∼N

[
[δ(t)(x)]i · [δ(t

′)(x′)]i
]
∀i ∈ [n].

(8)

The RNTK for two inputs x and x′ with length T and T ′ can
thus be obtained as

Θ(x,x′) =

(
T∑
t=1

T ′∑
t′=1

(
Π(t,t′)(x,x′) · Σ(t,t′)(x,x′)

)
+K(t,t′)(x,x′)

)
⊗ Id. (9)

where Id is the identity matrix of size d. For φ(z) =
ReLU(z) = max(0, z), an analytical formula exists for the
RNTK, enabling fast point-wise evaluation of RNTK on the
input data. The full and detailed derivation of the RNTK is
given in [17]. Given a means to compute the RNTK, we can
use the RNTK to compute similarities between data points of
varying length and extend classical dimensionality reduction
techniques.

3. MASK: RNTK-BASED DIMENSIONALITY
REDUCTION

We now present MASK, the incorporation of the RNTK into
standard dimensionality reduction methods. The key idea is to
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replace the pairwise distance (or similarity) measure used in
these methods with a new distance computed by RNTK. We
introduce two specific instances of MASK: RNTK PCA and
RNTK t-SNE. While we specifically use PCA and t-SNE as
examples, we emphasize that MASK is generally applicable
and that any dimensionality reduction technique that operates
off of kernels is compatible with MASK.

3.1. RNTK PCA

PCA constructs new dimensions by finding the linear combi-
nation of the original dimensions that are uncorrelated with
each additional dimension containing the most variance pos-
sible from the data [31]. It can be shown that these dimen-
sions are the eigenvectors of the data’s covariance matrix and
are thus linear combinations of the original data dimensions,
yielding a linear embedding. Many times, the data is not lin-
early separable in its original dimensions, and it may be ben-
eficial to first map the data points into a higher-dimensional
space before finding its covariance matrix’s eigenvectors to
allow nonlinear embeddings. Using the kernel trick, one need
not compute the higher-dimensional data points; one sim-
ply needs to compute the inner products between the higher-
dimensional data points (i.e. the output of the kernel function)
in the form of a matrixK with entriesKi,j = 〈Φ(xi),Φ(xj)〉
for some given mapping function Φ and following the method
in [32]. RTNK PCA is obtained by using the RTNK outputs
as the kernel: Ki,j = Θ(xi,xj) from Eq. 1.

3.2. RNTK t-SNE

In t-SNE, the pairwise similarity of two data points xi and xj
is defined as a conditional probability:

pj|i =
exp

(
−‖xi,xj‖2

2σ2
i

)
∑
k 6=i exp

(
−‖xi−xj‖2

2σ2
i

) , (10)

where σi is a parameter [7]. Next, a probability distribution
is defined based on the distances of the low-dimensional em-
beddings:

qj|i =
exp(−‖yi − yj‖2)∑
k 6=i exp(−‖yi − yk‖2)

. (11)

The low-dimensional embeddings yi for each data point xi is
then obtained by minimizing the Kullback-Leibler divergence
C =

∑
i

∑
j pj|i log

pj|i
qj|i

between the two induced probability
distributions.

To apply the RNTK function into t-SNE, we first define
the RNTK distance based on Eq. 1 and the Pearson dissimi-
larity [33]:

d(xi,xj) =

√
1− Θ(xi,xj)√

Θ(xi,xi)Θ(xj ,xj)
. (12)

t-SNE

Class 1
Class 2

RNTK t-SNE

Class 1
Class 2

PCA

Class 1
Class 2

RNTK PCA

Class 1
Class 2

Fig. 1. Demonstration of MASK dimensionality reduction
to separate variable-length time series data. Top left: t-SNE
on original sequences padded with zeros fails to separate the
data. Top right: RNTK t-SNE successfully separates the data
into distinct clusters corresponding to the different classes of
time series. Bottom left: PCA on original sequences padded
with zeros fails to separate the data. Bottom right: RNTK
PCA successfully separates the data into distinct clusters cor-
responding to the different classes of time series.

The RNTK t-SNE pairwise conditional probabilities for two
data points xi and xj can then be defined as:

pj|i =
exp

(
−d(xi,xj)

2

2σ2
i

)
∑
k 6=i exp

(
−d(xi,xk)

2

2σ2
i

) , (13)

which differs from classical t-SNE simply by replacing its Eu-
clidean distance with the novel RNTK-based distance. After-
wards, the standard t-SNE method of finding the Kullback-
Leibler divergence between p and q proceeds as usual to pro-
duce the low-dimensional MASK embeddings.

4. EXPERIMENTS

We now experimentally demonstrate that two specific exam-
ples of MASK, namely RNTK PCA and RNTK t-SNE, pro-
duce more distinct patterns on several synthetic datasets com-
pared to PCA and t-SNE with classic kernels.1

4.1. Dataset

Many real-world time series data can be modeled by linear
dynamic systems. Therefore, for our experiments, we use

1Our code can be found at https://github.com/dlej/MASK.
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synthetic time series data generated from the following family
of differential equations:

t2
∂2x(t)

∂t2
− a1

∂x(t)

∂t
− a0tx(t) = 0. (14)

To sample time series data of different classes, we draw
a0 ∼ N (0, 0.0025) and a1 ∼ N (−4, 4) for class 1 and
a0 ∼ N (0, 0.01) and a1 ∼ N (−20, 1) and for class 2. We
sample 100 sequences of length 30 for each class and then
randomly drop elements with probability 0.2 in each sequence
to shorten the sequences, resulting in sequences with varying
lengths.

We emphasize that we choose the system in Eq. 14 only
for demonstrative purpose and that MASK works generally
on other types of time series data.

4.2. Experiment Setup

We compute RNTK using the default set of parameters: σw =
2, σu = 0.316, and σb = 10−5. To compare against fixed-
length methods, i.e., PCA and t-SNE with classic kernels, we
pad the end of the sequences with zeros until they are of the
same length. We used the Scikit-learn [34] implementations
of PCA and t-SNE with default parameters, although the re-
sults were similar even when tuning para

4.3. Results

Fig. 1 visualizes the dimensionality reduction results compar-
ing PCA and t-SNE with their RNTK replaced counterparts.
The color and shapes of points represent different classes. We
clearly observe obvious separation of classes in both RNTK
PCA and RNTK t-SNE whereas classic PCA and t-SNE fails
to separate the data. These results validate the proposed
MASK’s capability in extracting useful patterns from the
synthetic data, demonstrating its potential as a practical ker-
nel dimensionality reduction technique for time series data of
varying lengths.

5. CONCLUSIONS

We have demonstrated that, through MASK, we can extend
existing, well-proven dimensionality reduction techniques to
variable-length data using the RNTK. However, dimension-
ality reduction is not the only method that can be extended
in this manner; any kernel- or distance-based method can ex-
tended using MASK, for example, clustering. Our promising
preliminary experimental results on synthetic data validate the
utility of MASK. Future avenues of research include eval-
uating MASK on other modalities of time series data, such
as text, audio, speech, and natural language and extending
the current technique to other kernel-based methods beyond
PCA and t-SNE. MASK will revolutionize the way we think

about dimensionality reduction of different length data se-
quences and affords us with tremendous future directions for
real-world data.
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